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of tri- and tetrasubstituted olefins toward the Hofmann and 
Milas reagents is interesting. It seems likely that the osmate 
esters generated from highly substituted olefins could be 
slow to hydrolyze, thus creating a bottleneck in the catalytic 
sequence. The basic conditions used with our reagent proba­
bly facilitate hydrolysis12 of such hindered osmate esters 
and enable a more rapid turnover of the osmium catalyst.'4 
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Free Energies of Hydration and Hydrolysis of 
Gaseous Acetamide 

Sir: 
Despite widespread interest in the biochemical properties 

of the acylamido function in aqueous solution,-there seems 
to be little thermodynamic information about the strength 
of interaction between amides and solvent water. An abso­
lute measure of the hydrophilic character of a solute is pro­
vided by its equilibrium of distribution between dilute solu­
tion and the dilute vapor phase, in which intermolecular 
forces are absent. This is to report that the hydrophilic 
character of acetamide, which is apparently the first amide 
to have been studied in this way, far surpasses that of other 
simple uncharged organic compounds which have been 
measured before.12 

Initial attempts to measure the partial pressure of aque­
ous acetamide by conventional methods were in vain. Anal­
ysis by mass spectrometry showed that acetamide was not 
present at detectable levels (ca. 1O-3 Torr) in samples re­
moved from the gas space over stirred solutions of acet­
amide (1 M) in water at 25°. It was therefore necessary to 
resort to a dynamic technique, similar to that first devel­
oped by Shaw and Butler3 for use with more volatile so­
lutes, and use radioactivity as a means of detection. 

In a typical experiment, water-pumped nitrogen was 
passed (at a rate of 40 ml/min) through a glass train con­
sisting of a series of three wash bottles with fritted glass 
disks, each containing 100 ml of acetamide-7-14C (0.01 M, 
0.03 Ci/mol) in dilute KOH (0.01 M). The alkali was 
added to trap acetic acid, which was found to be generated 
in trace quantities during long-term experiments. Continu­
ing through a spray trap, the effluent gas then passed 
through a second series of three wash bottles, each contain­
ing water (150 ml). At intervals, samples were removed 
from these traps for analysis of radioactivity accumulated 
as a function of the volume of gas passed through the train. 
Of the radioactivity transferred, more than 96% appeared 
in the first two receiving vessels, indicating the efficiency of 
the trapping system. The chemical nature of the radioactive 
substance transferred was determined by measuring its dis­
tribution coefficient between water, containing either HCl 
(0.05 M) or KOH (0.05 M), and 1-octanol at 25°. In both 
acidic and basic systems, the radioactive substance exhib­
ited ATd = 0.070 toward octanol, identical with values mea­
sured with samples of authentic acetamide in separate ex­
periments (and similar to a value extrapolated from the ob­
served behavior of butyramide4). In contrast, the possible 
contaminant acetic acid gave Kd = 0.60 from 0.05 M HCl 
to octanol, and KA < 0.001 from 0.05 M KOH to octanol 
(consistent with literature values4). 

The rate of transfer of radioactive acetamide was found 
to be proportional to the rate of flow of gas, and to the con­
centration of radioactivity in the equilibrating vessels. The 
rate was unaffected by varying the concentration of nonra­
dioactive acetamide in the equilibrating vessels in the range 
from 0.001 to 0.01 M (consistent with the known monomer-
ic nature of acetamide in water5), or by increasing the vol­
ume and number of equilibrating vessels containing ra­
dioactive acetamide in solution (indicating that equilibra­
tion was complete under these conditions). The observed 
rate of transfer corresponded to an absolute distribution 
coefficient of 7.6 X 1O-8 (with a standard deviation of 2.5 
X 10~8 in eight experiments) from water to the vapor phase 
at 25°. 

The most hydrophilic of simple organic compounds stud­
ied previously, acetic acid, gave Kd = 1.1 X 10~5 for distri­
bution from aqueous solution (0.05 M) to the vapor phase 
by the present method, in good agreement with earlier de-
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Table I. Absolute Distribution Coefficients for Transfer from Dilute 
Aqueous Solution to the Vapor Phase at 25 0 C 

Ethane* 
Ethylene4 

Acetylene6 

Dimethyl etherc 

Ethyl acetate1* 
Acetone^ 
Ethylamine^ 
Ethanol' 
Acetic acid^ 
Acetamide^ 
Ammonia* 
Water* 

22 
9.6 
1.1 
4.1 X ICT2 

5.4 X ICT3 

1.3 X IO"3 

4.1 X 10-" 
2.1 X 1(T4 

1.1 X 10"5 

7.6 X 10~8 

7.7 X 10"4 

2.5 X IfJ-5 

" Equilibria in mol/1. in vapor, divided by mol/1. in dilute aqueous 
solution. * Reference 8. c Reference 9. d Reference 10. e Reference 1. 
/ This work, i Reference 11. * Reference 12. 

Table II. Free Energies of Reaction in Dilute Solution and in the 
Vapor Phase 

Acetamide Ethyl acetate Ethyl acetate 
hydrolysis hydrolysis ammonolysis 

AC for reaction in dilute +6.4C +0.7"* -5.7 
aqueous solution at 25 

(AG for solvation of +4.9 -2.4 -7.3 
gaseous products) -
(AG for solvation of 
gaseous reactants)6 

AG for reaction in the +1.5 +3.1 +1.6 
dilute vapor phase at 
25 0C 

" Free energies in kcal based on uncharged reactants and products in 
dilute solution, with water activity taken as 55.6 M. * Free energies of 
solvation calculated from distribution coefficients in Table I. c As­
sumed equivalent to a value for propionamide, calculated from the data 
of Morawetz and Otaki using propionic acid pKa = 4.88 (ref 14). d Re­
ference 15. 

terminations.6 Values for simple representatives7 of organic 
compounds of various classes, compared in Table I, are dis­
tributed over a range that exceeds eight orders of magni­
tude. The extreme position of acetamide is consistent with a 
relatively large shift in carbonyl stretching frequency that 
occurs when the compound is transferred to water from the 
vapor phase,13 and with the possibility that the molecule in 
aqueous solution possesses some zwitterionic character. 

Theoretical considerations suggest16'17 that noncovalent 
hydration often plays a decisive role in determining bio­
chemical energetics in aqueous solution. This is illustrated 
clearly by the equilibria for hydrolysis of amides and esters, 
which are actually shifted in opposite directions when these 
reactions are transferred between dilute aqueous solution 
and the vapor phase (Table II). This effect is so pronounced 
that solvation may be said to provide the entire driving 
force (—7.3 kcal) for the ammonolysis of ethyl acetate, a re­
action which is strongly exergonic in water but slightly en-
dergonic in the vapor phase (Table II). There is little doubt 
that changing solvation exerts an important influence on 
the equilibrium conformation of macromolecules, the cata­
lytic activity of enzymes, and the behavior of biological re­
ceptors and energy transducing systems. It would therefore 
be useful to have information about the solvation of other 
polar molecules of biological interest. 
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2a,8a,8b,8c-Tetrahydropentaleno[6,l,2-a/Y]azulene 

Sir: 

The triquinacenes have stimulated great interest for both 
theoretical and synthetic chemists.1-3 A new member of this 
fascinating family of compounds, 2a,8a,8b,8c-tetrahydro-
pentaleno[6,1,2-aji]azulene (1), has special significance be­
cause of its relationship to potentially antiaromatic [12]an-
nulenes.4 We wish to report the synthesis of 1, which in­
volves a new approach to the triquinacene system and which 
employs an unusually facile formal a2s + ff2s cyclorever-
sion. 

The synthetic path recognizes the relationship between 1 
and norcaradiene 2 and is outlined in Scheme I. The ketone 
3 is readily available by an amalgamation of the work of 
Baker5 and Battiste.6 Subjection of ketone 3 to condensa­
tion with the preformed methoxy Wittig reagent 
(Ph3P+CH2OCH3Cl-, «-C4H9Li, THF) under forcing con­
ditions (diglyme, room temp —* reflux) gave the desired 
enol ether 47 [NMR: 5 5.04 (s, 1 H), and 3.02 (s, 3 H); ir 
1730 (=OCH3), 1603 (aryl) cm"1], which, without purifi­
cation, was treated with 3 N aqueous hydrochloric acid at 
room temperature to smoothly give the desired aldehyde 5,7 

mp 74-7 0C [NMR: S 8.34 (s, 1 H), 6.8-7.2 (AA'BB', 4 
H), 6.29 (t (J = 2 Hz), 2 H), 3.35 (br s, 2 H), 3.22 (s, 2 H), 
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